

We have no financial disclosures or conflicts of interest with the material in this presentation.

Leslie-Anne Dietrich, MD, IBCLC Assistant Professor Division of Neonatology Director, Infant Feeding Support Program Assistant Director, PREMIEre Clinic University of Texas Health San Antonio

Melanie Van Noy MS, CCC-SLP, IBCLC, CNT, NTMTC
Owner of The Feeding Connection, LLC Contributor for Knowledge is Now Neonatal Therapist in NICU for Baylor S&W Councilor for VP of Prof Services, TSHA

4

6

2

Categories of Diabetes

3

5

Type 1 Diabetes

Type 2 Diabetes

Gestational Diabetes

1 in 7 adults (51 million) are living with diabetes. The number of adults with diabetes is expected to reach 57 million by 2030 and 63 million by 2045. 1 in 4 adults living with diabetes are undiagnosed. 931,000 deaths caused by diabetes in 2021.

County-Level Distribution of Diagnosed Diabetes Prevalence among US Adults ≥20 years

Notes: Percentages are age-adjusted to the 2000 US Census standard population using age groups 20-44, 45-64, and 65 or older. Maps include all 50 tates and Puerto Rico, Figure adapted from CDC-3 <u>Massion Jalaberes Satistres Redoct</u> Data sources: United States Diabetes Surveillance System and Behavioral Risk Factor Surveillance System, Center for Disease Control and Prevention.

How does Maternal Diabetes affect the Fetus and Neonate?

7 8

Why do IDMs have difficulty with oral feeding?

"They are just immature"

Abnormal State Maintenance

9 10

Infant Behavior

Dimensions	Examples	Score Ranges	Optimal
Response decrement		0-9	9
Orientation	Looking at inanimate objects and animate faces and listening to inanimate sounds and animate unices.	0.9	9
Range of state	Extent to which infants were in sleep and wake states	0.9	mid-range
Motor processes	Smoothness, amount, and angle (arcs) of movements	0.9	mid-range
Autonomic stability	Color changes and tremulousness	0.9	9
Regulation of state	A neonate's ability to rouse, maintain, and console self	0.9	9
Reflex functioning	Elicited responses, such as sucking. Moro, and crawling	0-20	0

	IDM infants demonstrated
Yogman et al. 1986	Lower orientation, motor and autonomic stability, and social interaction
Silverman et al. 1991	Performed poorly on motor, state, and physiologic stress response items Correlated with diabetes severity
Pressler et al. 1999	Low muscle tone and decreased response to engagement, poor reflex functioning, drowsy state, appeared to improve over time
Botet et al. 1996	No difference to healthy controls when mothers had

IMMATURE SUCKING PATTERNS IN INFANTS OF MOTHERS WITH DIABETES

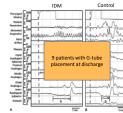
Ruben Bromker, M.D., Adv Rachamm, M.D., Cathy Hammerhan, M.D., Michael Schimmer, M.D., Michael Kaplani, M.B., Ch.B., and Barbara Middeff-Cooper, Pri.D.

	Group			
	Insulin	Diet	Control	
Number	16	31	55	
Gestational age (weeks)	38.6 ± .9°	$39.1 \pm 1.2 \dagger$	39.8 ± 1.0	
Birth weight (Kg)	3.47 ± .46	3.44 ± .41	3.47 ± .44	
Sex (M/F)	8/8	18/13	29/26	
Min Dextrostix (mg/dL)	50 ± 12	46 ± 12	NA	
Hypoglycemia (N and %)	3 (19%)	9 (29%)	NA	
Cesarean Section (N and %)	6 (37%)	6 (19%)	9 (17%)	
I-minute Apgar scores	9 (8-9)	9 (8-9)	9 (9)	
5-minute Apgar scores	9 (9)	9 (9)	9 (9)	

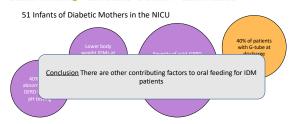
	Group		
Sucking Variable	Insulin	Diet	Control
Number of sucks	115 ± 65°	152 ± 71	157 ± 73
Number of bursts	14.5 ± 6.5†	18.3 ± 6.6	19.7 ± 7.9
Number of sucks per burst	9.6 ± 11.4	9.5 ± 8.1	9.9 ± 12
Suck Width (sec)	.38 ± .08	.37 ± .08	.38 ± .00
Interburst Width (sec)	11.5 ± 7.5	8.7 ± 4.6	8.6 ± 4.3
Maximum pressure (mm Hg)	70 ± 39	61 ± 27	69 ± 40

Table II. Sucking variables of infants of mothers

11 12


Pilot Study of Pharyngoesophageal Dysmotility Mechanisms in Dysphagic Infants of Diabetic Mothers

Manish B. Malkar, MD, MPH¹ Sreekanth K. Viswanathan, MD, MS^{2,3} Sudarshan R. Jadch Am J Perinatol 2019;36:1237-1242.


13

17

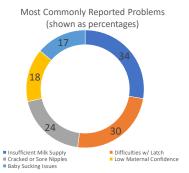
Diagnostic utility of impedance-pH monitoring in infants of diabetic mothers with oral feeding difficulties

Sreekanth Viswanathan $^{\circ}$ 1,2 \cdot Sahithee Batchu 2 \cdot Erika Osborn 2,3 \cdot Sudarshan Jadcherla 2,3

14

Breastfeeding

- Women with diabetes are *less likely* to exclusively breastfeed their babies
- Women with GDM who breastfeed are more likely to have improved insulin sensitivity postpartum and thereafter and reduce the risk of obesity and developing T2DM
- Children of women with DM who breastfeed have reduced BMI in childhood and decreased prevalence of T2DM


Breastfeeding

- Women with DM are less likely to exclusively breastfeed and more likely to have early formula supplementation (within 2 days after birth)
- Women with any type of DM are more likely to experience delayed milk production
- Multiple barriers secondary to complications for mother and infant from diabetes during pregnancy

15

16

18

(Morrison et al 2015)

How Can We Support?

- · Stuebe et al 2016- Nutrition, Exercise and coping Skills Training (NEST) intervention
- Consider prenatal expression of breastmilk starting at 36 weeks of pregnancy

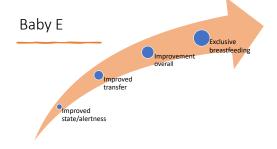
3

Quick Case Study

Baby E

- Mom with Type 1 DM, well-controlled
- Born at 37 weeks, mild hypoglycemia; Observed for 24 hours; No NICU stay required
- Poor weight gain
- Diagnosed with tongue tie from pediatrician and chiropractor

- Sleepy for feeds, poor arousal/state


19

- Feed the baby
- Protect the supply
- Protect the relationship

21 22

Future Directions

- More research on behavior and feeding patterns of infants of diabetic mother
- Consideration for alternative feeding methods (i.e. home nasogastric feeds)
- $\bullet\,$ Long term follow-up on growth and development
- · Address behavior and feeding complications during prenatal period

References

- Morrison MK, Collins CE, Lowe JM, Giglia RC. Factors associated with early cessation of breastfeeding in women with gests mellitus. Women Birth. 2015 Jun;28(2):143-7. doi: 10.1016/j.wombi.2014.12.002. Epub 2015 Jan 22. PMID: 25618836.

23 24

4